Technical Data Sheet
Planibel Anti-Fog, iplus 1.1-AF,
Energy N-AF, ipasol neutral 70/37-AF,
Stopray Vision-72-AF

11/2018
INTRODUCTION

NORMATIVE REFERENCES

COMPOSITION AND PROPERTIES OF THE GLASS

3.1 CHEMICAL COMPOSITION

3.2 MECHANICAL PROPERTIES

3.3 THERMAL PROPERTIES

3.4 OPTICAL PROPERTIES

3.5 ELECTRICAL PROPERTIES

DURABILITY OF COATINGS

LIGHT, SOLAR AND THERMAL PROPERTIES

5.1 CONVENTION FOR COATING POSITION

5.2 TOLERANCES ON LIGHT AND SOLAR PROPERTIES

5.3 TOLERANCES ON THERMAL PROPERTIES

5.4 PERFORMANCES OF ANTI-FOG PRODUCTS AND IPLUS TWIN TOP

ACOUSTIC PROPERTIES

TOLERANCES ON DIMENSIONS

7.1 THICKNESS

7.2 LENGTH AND WIDTH

QUALITY REQUIREMENTS

8.1 INTRODUCTION

8.2 DEFINITIONS OF DEFECTS

8.3 DETECTION OF DEFECTS

8.4 CONDITION OF OBSERVATION OF DEFECTS

8.5 ACCEPTANCE CRITERIA OF COATINGS GLASS DEFECTS

8.6 COLOR DIFFERENCE IN FAÇADES

OTHER RELATED DOCUMENTS

AGC
1 INTRODUCTION

This Technical Datasheet gives information about the Planibel Anti-fog, iplus 1.1-AF, Energy N-AF, ipasol neutral 70/37-AF and Stopray Vision-72-AF.

These information's are related to stock sizes.

2 NORMATIVE REFERENCES

Anti-Fog products and iplus Twin Top conform to:
- EN 1096-1 – Glass in building – Coated glass – Part 1: Definitions and classification
- EN 1096-2 – Glass in building – Coated glass – Part 2: Requirements and test methods for class A, B and S coatings
- EN 1096-3 – Glass in building – Coated glass – Part 3: Requirements and test methods for class C and D coatings
- EN 1096-4 – Glass in building – Coated glass – Part 4: Evaluation of conformity/Product standard

Planibel Anti-Fog, iplus 1.1-AF, Energy N-AF, ipasol neutral 70/37-AF and Stopray Vision-72-AF are CE-marked following EN 1096-4; CE-Marking declarations are available from www.yourglass.com/CE.

Planibel Anti-Fog , iplus 1.1-AF, Energy N-AF, ipasol neutral 70/37-AF and Stopray Vision-72-AF are produced in factories being ISO 9001 certified.

3 COMPOSITION AND PROPERTIES OF THE GLASS

The basis glass used for Planibel Anti-Fog, iplus 1.1-AF, Energy N-AF, ipasol neutral 70/37-AF and Stopray Vision-72-AF production is float glass conform to EN 572-1 & 2. The properties of the float glass are listed hereunder.

3.1 CHEMICAL COMPOSITION

The EN 572-1 defines the magnitude of the proportions by mass of the principal constituents of float glass is as following.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>69 to 74 %</td>
</tr>
<tr>
<td>Na₂O</td>
<td>10 to 16 %</td>
</tr>
<tr>
<td>CaO</td>
<td>5 to 14 %</td>
</tr>
<tr>
<td>MgO</td>
<td>0 to 6 %</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0 to 3 %</td>
</tr>
<tr>
<td>Others</td>
<td>0 to 5 %</td>
</tr>
</tbody>
</table>
3.2 MECHANICAL PROPERTIES

- Weight (at 18°C): \(\rho = 2500 \text{ kg/m}^3 \)
- Density: 2,5
- Young's Modulus (modulus of Elasticity): \(E = 70000 \text{ N/mm}^2 \)
- Poisson Ratio: \(\mu = 0,2 \)
- Shear Modulus: \(G = \frac{E}{2(1+\nu)} \approx 29166 \text{ N/mm}^2 \)
- Knoop Hardness: 6 GPa
- Mohs Hardness: 6
- Characteristic bending strength: 45 N/mm²

3.3 THERMAL PROPERTIES

- Softening point: \(\approx 600 \text{ °C} \)
- Fusion temperature: \(\approx 1500 \text{ °C} \)
- Linear expansion coefficient: \(\alpha = 9.10^{-6}/K \) (between 20° and 300°)
- Specific heat capacity: \(C = 720 \text{ J/(kg.K)} \)

3.4 OPTICAL PROPERTIES

- Refractive index \(N \) to visible radiation (380 to 780 nm):
 - air/glass: 0,67
 - glass/air: 1,50

3.5 ELECTRICAL PROPERTIES

- Specific resistance: \(5.10^7 \Omega \text{m} \) at 1 000 Hz and 25°C
- Dielectric constant: 7,6 at 1 000 Hz and 25°C

4 DURABILITY OF COATINGS

Planibel Anti-fog is class A following EN 1096-1.
iplus 1.1-AF, Energy N-AF, ipasol neutral 70/37-AF and Stopray Vision-72-AF are glazings with 2 coatings. One coating is class A following EN 1096-1 and the second coating is class C following EN 1096-1.

Coatings of class A succeed the durability test following EN 1096-2:
- Resistance to condensation: 21 days
- Resistance to acid: 5 cycles
- Neutral salt spray: 21 days
- Resistance to abrasion: 500 cycles

Coatings of class C succeed an UV resistance test following EN 1096-3.
5 LIGHT, SOLAR AND THERMAL PROPERTIES

5.1 CONVENTION FOR COATING POSITION

The following conventions are used for the numbering of the glass faces and the position of the coating. For glasses with two coatings, only the coating of class C is indicated.
5.2 TOLERANCES ON LIGHT AND SOLAR PROPERTIES

The light and solar properties are calculated using spectral measurement that conforms with standards EN 410 and WIS/WINDAT. The following properties are given:

- LT (τ_v): Light transmission
- LR (ρ_v): Light reflection on coating side
- LR' (ρ'_v): Light reflection on glass side
- DET (τ_e): Direct energy transmission
- ER (ρ_e): Energy reflection on coating side
- ER' (ρ'_e): Energy reflection on glass side
- EA (α_e): Energy absorption
- SF (g): Solar factor
- SC: Shading coefficient

The tolerances on the values LT, LR, LR', DET, ER, ER' are +/- 3 %.

Notes: they are no direct tolerances on SF, SC and EA as these values are calculated from the previous ones.
5.3 TOLERANCES ON THERMAL PROPERTIES

The thermal transmittance U_g (W/m²K) is calculated according EN 673. The emissivity measurement complies with EN 673 and EN 12898.

The tolerance on the values of normal emissivity ε_n is +0.01.

5.4 PERFORMANCES OF ANTI-FOG PRODUCTS AND IPLUS TWIN TOP

The table lists the light, solar and thermal properties of 4 mm Planibel Anti-fog, iplus 1.1-AF, Energy N-AF, ipasol neutral 70/37-AF and Stopray Vision-72-AF.

<table>
<thead>
<tr>
<th></th>
<th>LT</th>
<th>LR</th>
<th>LR'</th>
<th>DET</th>
<th>ER</th>
<th>ER'</th>
<th>ε_n</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planibel Anti-Fog</td>
<td>83</td>
<td>12</td>
<td>11</td>
<td>74</td>
<td>12</td>
<td>11</td>
<td>0.14 - 0.89</td>
<td>A</td>
</tr>
<tr>
<td>iplus 1.1 - AF *</td>
<td>83</td>
<td>8</td>
<td>10</td>
<td>59</td>
<td>28</td>
<td>20</td>
<td>0.03 - 0.14</td>
<td>A – C</td>
</tr>
<tr>
<td>Energy N - AF *</td>
<td>74</td>
<td>9</td>
<td>10</td>
<td>40</td>
<td>42</td>
<td>29</td>
<td>0.01 - 0.14</td>
<td>A – C</td>
</tr>
<tr>
<td>Stopray Vision-72-AF *</td>
<td>73</td>
<td>10</td>
<td>12</td>
<td>37</td>
<td>44</td>
<td>31</td>
<td>0.01 - 0.14</td>
<td>A – C</td>
</tr>
<tr>
<td>ipasol neutral 70/37-AF</td>
<td>71</td>
<td>10</td>
<td>11</td>
<td>36</td>
<td>46</td>
<td>30</td>
<td>0.01 - 0.14</td>
<td>A – C</td>
</tr>
</tbody>
</table>

* LR and ER are reflection on coating side (class C).
* LR’ and ER’ are reflection on coating side (class A).

6 ACOUSTIC PROPERTIES

The table lists the acoustic properties.

<table>
<thead>
<tr>
<th>Rw (C;Ctr)</th>
<th>Rw+C</th>
<th>Rw+Ctr</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>30 (-2;-4)</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>31 (-2;-3)</td>
<td>29</td>
</tr>
</tbody>
</table>
7 TOLERANCES ON DIMENSIONS

The same tolerances than for the float used as support of the coating apply. These information's are related to stock sizes.

7.1 THICKNESS

The actual thickness shall be the average of for measurements, taken to the nearest 0,01 mm, one taken at the center of each side.

The actual thickness rounded to the nearest 0,1 mm shall not vary from the nominal thickness by more than the tolerances shown in the table.

<table>
<thead>
<tr>
<th>Minimum (mm)</th>
<th>Maximum (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,8</td>
<td>4,2</td>
</tr>
<tr>
<td>5,8</td>
<td>6,2</td>
</tr>
</tbody>
</table>

7.2 LENGTH AND WIDTH

The tolerances on nominal dimensions length H and width B are respectively ± 3 mm and ± 2 mm.

The limit of squareness is described by the difference between diagonals. The difference is maximum 5 mm.
8 QUALITY REQUIREMENTS

8.1 INTRODUCTION

The defect affecting appearances are:
- Specific from the float glass: see the Technical Datasheet "Planibel"
- Specific to the coating: see hereunder.

If a defect specific to the glass substrate is more visible because of the coating, it will be treated as a coating defect.

8.2 DEFINITIONS OF DEFECTS

The following definitions apply:
- **Uniformity defect**: Slight visible variation in color, in transmission or reflection, within a coated glass pane or from pane to pane
- **Stain**: Defect in the coating larger than punctual defect, often irregularly shaped, partially of mottled structure.
- **Punctual defect**: Punctual disturbance of the visual transparence looking through the glass and of the visual reflectance looking at the glass

 Note: Spot, pinhole and scratch are types of punctual defect.
- **Spot**: Defect that commonly looks dark against the surrounding coating, when viewed in transmission
- **Pinhole**: Punctual void in the coating with partial or total absence of coating and normally contrasts clear relative to the coating, when viewed in transmission
- **Scratch**: Variety of linear mark, whose visibility depends on their length, depth, width, position and arrangement
- **Cluster**: Accumulation of very small defects giving the impression of stain.

8.3 DETECTION OF DEFECTS

8.3.1 GENERAL

The defects are detected visually by an observation of the coated glass in transmission and/or reflection. An artificial sky or daylight may be used as the source of illumination.

8.3.2 ARTIFICIAL SKY

The artificial sky is a plane emitting diffuse light with a uniform brightness and a general coloring index Ra higher than 70.

It is obtained by using a light source whose correlated color temperature is in the range between 4000 K and 6000 K. In front of the arrangement of light sources is a light scattering panel, without spectral selectivity. The illuminance level, on the glass surface shall be between 400 lx and 20000 lx.

AGC
8.3.3 DAYLIGHT ILLUMINATION

Daylight illumination is a uniform overcast sky, without direct sunlight.

8.4 CONDITION OF OBSERVATION OF DEFECTS

8 GENERAL

Coated glass may be examined in stock size or in finished sizes ready for installation. The examination may be undertaken in the factory or on site when glazed.

The pane of coated glass being examined is viewed from a minimum distance of 3 m. The actual distance will be dependent on the defect being considered and which illumination source is being used. The examination of the coated glass in reflection is performed by the observer looking at the side which will be the outside of the glazing. During the examination the angle between the normal to the surface of the coated glass and the light beam proceeding to the eyes of the observer after reflection or transmission by the coated glass shall not exceed 30° (see figure).
For panes of coated glass in finished sizes ready to be installed, both main area and edge area of the pane shall be examined (see figure).

Each examination will take no more than 20 s.
8.4.2 UNIFORMITY DEFECTS AND STAINS

Under the condition of examination given in 8.4.1, note any coating variations either within on pane or between neighbouring panes which are visually disturbing.

8.4.3 PUNCTUAL DEFECTS

Under the conditions of examination given in 8.4.1, note any spots, pinholes and/or scratches that are visually disturbing.

For spots/pinholes, measure the size and note the number relative to the size of the pane. If there are any clusters found, their position relative to the through vision area shall be determined.

For scratches, determine whether or not they are in the main or edge area. Measure the length of any scratches noted. For scratches > 75 mm long, determine the distance between adjacent scratches. For scratches ≤ 75 mm long, note any area where their density produces visual disturbances.

8.5 ACCEPTANCE CRITERIA OF COATINGS GLASS DEFECTS

The acceptance criteria for the defects of coating glass are given in the table.

<table>
<thead>
<tr>
<th>Defect types</th>
<th>Acceptance criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pane/Pane</td>
</tr>
<tr>
<td>UNIFORMITY/STAIN</td>
<td>Allowed as long not visually disturbing</td>
</tr>
<tr>
<td>PUNCTUAL</td>
<td></td>
</tr>
<tr>
<td>Spot/pinholes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>> 3 mm</td>
<td></td>
</tr>
<tr>
<td>> 2 mm and ≤ 3 mm</td>
<td></td>
</tr>
<tr>
<td>Clusters</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>Main area</td>
</tr>
<tr>
<td></td>
<td>Not allowed</td>
</tr>
<tr>
<td></td>
<td>Max 1 by m²</td>
</tr>
<tr>
<td>Scratches</td>
<td>Not applicable</td>
</tr>
<tr>
<td>> 75 mm</td>
<td>Not allowed</td>
</tr>
<tr>
<td>≤ 75 mm</td>
<td>Not allowed</td>
</tr>
</tbody>
</table>
8.6 COLOR DIFFERENCE IN FAÇADES

8.6.1 METHOD AND CONDITION OF OBSERVATION

When coated glasses are installed on façades, some variations of color can appear between the panes. The document of Glass for Europe "Code of practice for in-situ measurement and evaluation of the color of coated glass used in façades" (available at www.glassforeurope.com/images/cont/91_19807_file.pdf) describes the way to measure and evaluate these differences of color.

8.6.2 REQUIREMENTS

The values of ΔL^*, Δa^* and Δb^* determined in accordance with 8.6.1 shall meet the following requirement.

ΔL^*	$\leq 4,0$
Δa^*	$\leq 3,0$
Δb^*	$\leq 3,0$

9 OTHER RELATED DOCUMENTS

Following documents are also available from www.YourGlass.com:

- Processing Guide
- Cleaning and Maintenance Guide for Façade glazing
- Glazing Instruction
- CE-Marking declarations